If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2-18x+16.5=0
a = 4.9; b = -18; c = +16.5;
Δ = b2-4ac
Δ = -182-4·4.9·16.5
Δ = 0.6
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-\sqrt{0.6}}{2*4.9}=\frac{18-\sqrt{0.6}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+\sqrt{0.6}}{2*4.9}=\frac{18+\sqrt{0.6}}{9.8} $
| X^2-(6x)+25=0 | | 3g+9=1 | | 165=-u+82 | | x2-(6x)+25=0 | | 6x+2x=+6 | | 5=3v+5-3v | | -h=11 | | -35+3x=64-6x | | -47=w/9 | | 3(x-4)=5(x=2 | | -x+202=13 | | 5p—7-18=-43 | | 15x2−3x=3−7x | | -v/9=-33 | | -x=202=13 | | 21+2-x+12x=44 | | 7x+3=-3+5x+20 | | 4(m-8)=48 | | 24=b(12) | | 2(4x-2)=8x+4 | | -15+2z=z | | 2.40x+2.00=14.50 | | w/4-2=24 | | -5(x-2)-15=19+1 | | 6f-16=-20+10f | | 2•(x+1)-1=3-(1-2x) | | -6-46=42+2x | | -14-14p=8-8p+8 | | 4÷5z=16 | | (u-14)/2=2 | | 2x+105=9x-14 | | 1/3s+2/9s=10 |